

Static Detection of Vulnerabilities via Graph Attention hierarchically

Yuhan Zhang 1,2, Xueyang Liu1+, Dongdong Du3+

Abstract. With the rapid growth of the software industry, the risks of vulnerabilities are inevitably
increasing. Deep learning based methods have been widely used in vulnerability detection in recent years.
Since the inherent graph structure of source code contains rich semantics, many deep learning works have
exploited graph neural networks to enhance code representation. Despite their novel design, learning the
structural information in the graph hierarchically and focusing on important nodes are still problems to better
capture vulnerability semantics. To tackle this bottleneck, we propose a novel neural model for vulnerability
detection. A SAGPool module is designed to automatically chooses important nodes to retain hierarchically
in each graph convolution layer. Our model is trained and tested over the REVEAL dataset built on two
popular and well-maintained open-source projects. The experimental results demonstrate that our model
outperforms the state-of-the-art methods.

Keywords: code vulnerabilities, graph neural network, attention, etc.

1. Introduction
Internet and software have gradually become indispensable tools for human society. Due to the

massively growing number of software users and more prosperous software functions, the software's
complexity increases dramatically, which inevitably increases the security risks of software systems.

However, it is challenging and tedious to detect vulnerabilities even for developers with specialized
security expertise. Thus, automatic detection of vulnerabilities in source code has attracted a great research
focus. Traditional techniques like static analysis, dynamic analysis, and symbolic execution rely on expert
knowledge, resulting in high labor costs. Deep learning and machine learning have demonstrated their
extraordinary ability to summarize from samples and deal with noise. The feature mining and representation
capabilities of deep neural networks also provide an effective technical approach to detect software
vulnerabilities automatically.

Several studies have explored the potential of applying deep learning techniques to detect vulnerabilities.
However, most of these works have limitations in learning the semantic information. On one hand, there are
many substructures such as paths, trees and cycles which give the meaningful information, message-passing
in graph neural network may lost some semantic information. On the other hand, different nodes in the code
representation graphs contribute differently in the representation of the code graph. Thus, they do not learn
the hierarchical representations which are crucial for capturing structural information of graphs.

To this end, we propose a novel model based on the graph attention neural network, which concentrates
on hierarchically learning the representation of the code graph. The key innovation is leveraging Self
Attention Graph Pool(SAGPool)[1] with the graph neural network, which automatically distinguishes
between nodes that should be dropped and the nodes that should be retained in each layer. We choose the
REVEAL[2] dataset collected from the realistic data source to make the model more generalizable. Besides,
the code property graph (CPG) is leveraged to build the graph representation of the input code, for capturing
more semantics of the source code. CPG combines multiple semantics dimensions, like control flow
dependencies, data flow dependencies and so on. So it is suitable for the vulnerability detection task.

+ Corresponding author.

E-mail address: liuxueyang@pku.edu.cn. dudongdong@china-aii.com.

2021 the 11th International Workshop on Computer Science and Engineering (WCSE 2021)
doi: 10.18178/wcse.2021.06.002

1 National Engineering Research Center for Software Engineering, Peking University, China
2 School of Software and Microelectronics, Peking University, China

3 China Academy of Industrial Internet, Beijing, China

6

ISBN: 978-981-18-1791-5

In summary, our contributions in this paper are:

2. Related Work
Deep learning based vulnerability detection methods learn different vulnerability patterns from a train

dataset, all samples of which are labelled as vulnerable (label 1) or benign (label 0). Most current approaches
consist of three steps: (1) generate the intermediate representations of the code from the source code (2)
design suitable model to transform the intermediate representations into vectors (3) output the prediction
from the classifier according to the vector representations. In the light of different intermediate
representations of the code, there are two main kinds of approaches:

2.1. Token-based Models
Token-based models just regard source code as a token sequence. Russel et al.[3] directly input the code

sequence of a function into the model, learning the embedding of the code by the Convolution Neural
Network (CNN) combined with a Random Forest (RF) module. The simple way to process the code lead to
the length of the sequence affecting the performance of the model. To deal with it, Li et al. propose
VulDeePecker[4] and SySeVR[5] to extract the code slices as the input of the model. A code slice composes
of some program statements. These statements are semantically related in data dependency or control
dependency. VulDeePecker applies a Bidirectional Long Short Term Memory (Bi-LSTM) [6] and SySeVR
uses a Bidirectional Gate Recurrent Unit (Bi-GRU)[7] to capture the semantics of the context in the code
slice. Even though the code slice contains some semantic relations, statements semantically related to each
other may be far away, which makes the model hard to learn their relations.

2.2. Graph-based Models
Graph-based models leverage graph representation of code, such as control flow graph (CFG), program

dependency graph (PDG), code property graph (CPG). Devign[8] get four subgraphs from the CPG with
respect to different edge types to capture multi-dimensions of semantics. Accordingly, they use gated graph
neural network (GGNN)[9] to learn the representation of the subgraphs, and combine them by a convolution
module. Saikat et al. [2] make use of similar model to learn the representation of the CPG. On top of this,
they employ the representation learning[10] to increase the class separation between vulnerable samples and
benign samples. All these methods make full use of the semantic graph information of the code, but learn the
‘flat’ representation of the graph.

3. Proposed Model
In this section, we first present an overview of the architecture of our model. Then we introduce each

component of the model in detail.

3.1. Overview
In our model, we formalize the prediction of vulnerable code as a binary classification problem. Figure 1

shows the architecture of our proposed model. Firstly, we extract the features from the code property graph
(CPG) of the function code. Then, we learn the embedding of the CPG by the model. Finally, the model
predicts whether there are vulnerabilities in the code by a Multi-layer Perception (MLP) classifier.

7

We propose the graph neural network model with SAGPool[1] for graph-level classification. The
SAGPool module chooses important nodes to retain in each layer. Thus, the graph's representation is learned
hierarchically, which will focus more on the crucial nodes and capture the structure information.

We have conducted our experiments by comparing our model with the state-of-the-art vulnerability
detection approaches based on deep learning. The results show the effectiveness of our approach in terms of
both F1 score and accuracy.

Fig. 1: Overview Architecture of the Model

3.2. Extracting Graph Features
To get the syntax and semantics features of the code, we choose CPG as the intermediate representation,

which contains the structure information of the whole code. Figure 2 shows an example source code of a
function and its corresponding CPG, and the statement highlighted in red contains vulnerability.

In the situation that every node has both type attribute (i.e. Patameter, Assignment, Ifstatement) and
source code attribute, for node 𝑖𝑖, we use one-hot to encode the type of the node as 𝑇𝑇𝑖𝑖 and use word2vec to
encode the source code segment as 𝐶𝐶𝑖𝑖. Specifically, 𝐶𝐶𝑖𝑖 is calculated by adding the vectors of all tokens in the
code segment. The finally representation of node 𝑖𝑖 is denoted as ℎ𝑖𝑖0 = [𝑇𝑇𝑖𝑖 ||𝐶𝐶𝑖𝑖], where || means concatenate
operation. It is used to initialize the input node features 𝐻𝐻 ∈ ℝ𝑁𝑁×𝐹𝐹 for GNN module, where 𝑁𝑁 denotes the
number of nodes in the CPG and 𝐹𝐹 denotes the size of the node feature vectors.

Fig. 2: An Example of a Function and the Corresponding CPG

3.3. Graph Embedding with SAGPool
We use Graph Convolution Network (GCN) with SAGPool[1] to learn the embedding of the graph. The

process is shown in Figure 3, and the CPG in Figure 2 is simplified via numbers. The key point of SAGPool
is that it uses GCN to calculate self-attention scores. Attention mechanisms make models focus more on
important features and less on unimportant features. Specifically, self-attention allows input features to be
the criteria for the attention itself. SAGPool obtains self-attention scores using graph convolution. The GCN
formula[13] used in the model is:

 𝐺𝐺𝑁𝑁𝑁𝑁(𝐻𝐻,𝐴𝐴) = 𝐷𝐷�−
1
2𝐴𝐴𝐷𝐷�−

1
2𝐻𝐻 (1)

Accordingly, attention score 𝑍𝑍 ∈ ℝ𝑁𝑁×1 is calculated using the node features output from the GCN layer:
𝑍𝑍 = 𝜎𝜎(𝐺𝐺𝑁𝑁𝑁𝑁(𝐻𝐻,𝐴𝐴)Θ𝑎𝑎𝑎𝑎𝑎𝑎) (2)

8

where 𝐴𝐴 ∈ ℝ𝑁𝑁×𝑁𝑁 is the adjacency matrix, 𝐷𝐷� ∈ ℝ𝑁𝑁×𝑁𝑁 is the degree matrix of 𝐴𝐴 , and Θ𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ𝐹𝐹×1 is the
parameter for SAGPool layer.

SAGPool selects nodes by retaining a portion of nodes of the input graph. The hyperparameter 𝑘𝑘 ∈
(0,1] ,which is called pooling ratio, determines the number of nodes to keep, and the top ⌈𝑘𝑘𝑁𝑁⌉ nodes are
selected according to the value of attention scores in 𝑍𝑍.

𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘(𝑍𝑍, ⌈𝑘𝑘𝑁𝑁⌉),𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 (3)

Where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 is the function that returns the indices of the top ⌈𝑘𝑘𝑁𝑁⌉ values, ⋅𝑖𝑖𝑖𝑖𝑖𝑖 is the indexing
operation and 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 is the feature attention mask. In Figure 3, the model chooses nodes 1,5,6,7,8, which
contain more semantic information of the function.

After getting the self-attention mask, SAGPool masks the input graph for graph pooling. The equation
for calculating the pooled graph is:

𝐻𝐻′ = 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,:,𝐻𝐻𝑜𝑜𝑜𝑜𝑎𝑎 = 𝐻𝐻′ ⊙ 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 ,𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 (4)

Where 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,: is the row-wise indexed feature matrix, ⊙ is the broadcasted elementwise product, and
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 is the row-wise and col-wise indexed adjacency matrix. 𝐻𝐻𝑜𝑜𝑜𝑜𝑎𝑎 and 𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎 are the new feature matrix
and the corresponding adjacency matrix.

Fig. 3: An Illustration of the GCN Layer and SAGPool Layer

After 𝑇𝑇 GCN layers with SAGPool, we get the features of all nodes in the CPG, and the embedding of
the graph will be calculated by the sum of all node features in last layer, denoted as ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ.

3.4. Training
In the code dataset from the real scene, the number of vulnerable samples is far smaller than that of non-

vulnerable samples. In REVEAL[2], only 9.16% of the samples are vulnerable. To improve the performance,
we over-sample vulnerable samples to alleviate the data imbalance. In addition, the triplet loss[11] is adopted
to increase the discrimination between positive and negative samples.

In the classification layer, the embedding of CPG, ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ, is firstly projected to a latent space by a dense
layer 𝑓𝑓(⋅). The total loss is composed of three loss functions:(1) cross entropy loss ℒ𝑐𝑐𝑐𝑐 (2) triplet loss ℒ𝑎𝑎𝑔𝑔𝑖𝑖 (3)
regularization loss ℒ𝑔𝑔𝑐𝑐𝑔𝑔, i.e.:

ℒ = ℒ𝑐𝑐𝑐𝑐 + 𝛼𝛼ℒ𝑎𝑎𝑔𝑔𝑖𝑖 + 𝛽𝛽ℒ𝑎𝑎𝑔𝑔𝑖𝑖 (5)

ℒ𝑐𝑐𝑐𝑐 = −∑�𝑦𝑦� ⋅ 𝑙𝑙𝑡𝑡𝑙𝑙(𝑦𝑦) + (1 − 𝑦𝑦�) ⋅ 𝑙𝑙𝑡𝑡𝑙𝑙(1 − 𝑦𝑦)� (6)

ℒ𝑎𝑎𝑔𝑔𝑖𝑖 = �𝔻𝔻 �𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ�, 𝑓𝑓(ℎ𝑚𝑚)� − 𝔻𝔻�𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ�, 𝑓𝑓(ℎ𝑖𝑖)� + 𝛾𝛾� (7)

ℒ𝑔𝑔𝑐𝑐𝑔𝑔 =∥ 𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ� ∥ +∥ 𝑓𝑓(ℎ𝑚𝑚) ∥ +∥ 𝑓𝑓(ℎ𝑖𝑖) ∥ (8)

𝔻𝔻(𝑣𝑣1, 𝑣𝑣2) = 1 − �
𝑣𝑣1 ⋅ 𝑣𝑣2

∥ 𝑣𝑣1 ∥∗∥ 𝑣𝑣1 ∥
� (9)

ℒ𝑐𝑐𝑐𝑐 penalizes miss-classifications between the predict label 𝑦𝑦� and the true label 𝑦𝑦. ℒ𝑎𝑎𝑔𝑔𝑖𝑖 makes examples
from the same class close and examples from different class far away from each other. Here, ℎ𝑚𝑚 is graph
embedding from the same class, while ℎ𝑖𝑖 is graph embedding from different class. 𝔻𝔻(⋅) represents the

9

cosine distance between two vectors. 𝛾𝛾 defines the minimum separation boundary between classes. The goal
of our task is to learn parameters of the model by minimizing the loss function.

4. Experiment and Analysis

4.1. Experimental Setup
Dataset and Evaluate Metrics
In order to evaluate our model more realistically, we select the dataset REVEAL gathered from past

vulnerabilities of open-source projects Linux Debian Kernel and Chromium. The total number of samples in
the dataset is 18169 with 9.16% vulnerable samples. Every sample in the dataset is a function collected from
vulnerability-fix commits. To get the graph representations of the code samples, we use Joern[12] to extract
CPGs. We evaluate the approaches on four widely used metrics for binary classification tasks, i.e., Accuracy,
Precision, Recall, and F1-score.

Experimental Settings
We use Pytorch 1.5.1 with Cuda 10.1 to implement our experiment. We follow the implementation of

baseline models in [2]. For the GCN layer, the input embedding size is 169, and we set the hidden size to 256.
The number of GCN and SAGPool layers is 3, and the learning rate is 0.001. The hyperparameters in the loss
function, i.e., α,β, γ are set to 0.5, 0.001, 0.5. We use the Adam optimizer for all models.

4.2. Research Question
A. How does our proposed approach perform when compared with state-of-the-art models?
To answer this question, we compare the proposed model with the state-of-the-art deep learning-based

approaches:
VulDeePecker: the model extracts code gadgets according to library/API functions and employs the Bi-

LSTM model to learn the representation of them for classification.
SySeVR: a state-of-the-art token-based model that extracts code slices via PDGs and employs a Bi-

GRU model to learn the representation of them for classification.
Devign: the first graph-based deep learning model that leverages GGNN to learn the embedding of the

CPG of a function and uses a Convolution module to classify.
REVEAL: the state-of-the-art deep learning model that uses GGNN to learn the embedding of the CPG

of a function and uses representation learning to classify.

Table 1 Classification Accuracies, Precisions, Recalls and F1 Scores of Baseline Models in Percentages

method Acc Prec Recall F1

VulDeePecker 89.05 17.68 13.87 15.7

SySeVR 84.22 24.46 40.11 30.25

Devign 88.41 34.61 26.67 29.87

REVEAL 84.37 30.91 60.91 41.25

Our model 84.90 32.43 60.25 42.14

As indicated in Table 1, our proposed model achieves the highest score in F1-score and precision.
Compared to REVEAL, a robust latest method, the relative accuracy gain is 0.53%, the F1-score gain is
0.89%, and the relative precision gain is 1.52%. At the same time, the accuracy and F1 are relatively high
compared to other baseline models. Overall, our proposed model demonstrates significant performance
superiority over the baseline models.

B. Does SAGPool module learn more extra structural information?
To investigate this question, we choose the GCN module without SAGPool as the baseline. We also

compared the model without the sample module and triplet module to explore their impacts.

10

11

Table 2 Impact of SAGPool, Sample and Triplet Loss

approach Acc Prec Recall F1

Complete model 84.90 32.43 60.25 42.14

w/o SAGPool 78.12 40.13 17.72 24.58

w/o sample 80.41 36.69 33.93 35.26

w/o triplet loss 82.37 36.84 42.04 39.27

w/o sample & triplet loss 83.30 38.71 28.83 33.05

Table 2 summarizes all the experiment results. The model without SAGPool module declines sharply,
with 17.56% in F1 score and 6.78% in accuracy. We can safely conclude that SAGPool module helps learn
more structural information because it pays more attention to code graphs’ critical nodes. We observed that
oversampling positive samples improves the performance a lot in the imbalanced dataset in general. The
gains in F1-score is 6.88% and the gains in accuracy is 4.49%. The results also show that the triplet loss
helps discriminate positive samples and negative samples. These comparisons clearly demonstrate the
effectiveness of the SAGPool module, the sampling mechanism, and the triplet loss.

5. Conclusion and Threats to Validity
This study put forward a GCN model with SAGPool to detect code vulnerabilities and verify the

superiority over other state-of-art models in the experiment. In a word, the model can learn more structural
information about the vulnerability code, which will perform well in realistic scenes.

As mentioned in the experiment, alleviating the data imbalance may improve the model’s performance,
which is a problem in line with reality in the static vulnerability detection task. We only take a standard
method to solve it, which may result in overfitting. So it needs more improvements for imbalanced data
specific to the task itself. Finally, the size of the dataset is not big enough for the task, so the model cannot
learn the vulnerability patterns well. Thus, datasets collected from realistic data sources are needed. However,
such a dataset is hard to collect for the requirements for expert knowledge.

6. Acknowledgements
This research was supported by the 2019 Industrial Internet Innovation and Development Project No.

TC190H46G/1.

7. References
[1] Lee J, Lee I, Kang J. Self-attention graph pooling[C]//International Conference on Machine Learning. PMLR,

2019: 3734-3743.

[2] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. Deep learning based vulnerability detection: Are we there yet?
CoRR, abs/2009.07235, 2020.

[3] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. M. Ellingwood, and M. W.
McConley. Automated vulnerability detection in source code using deep representation learning. In M. A. Wani,
M. M. Kantardzic, M. S. Mouchaweh, J. Gama, and E. Lughofer, editors, 17th IEEE International Conference on
Machine Learning and Applications, ICMLA 2018, Orlando, FL, USA, December 17-20, 2018, pages 757–762.
IEEE, 2018.

[4] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. In 25th Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018. The Internet Society, 2018.

[5] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang. Sysevr: A framework for using deep earning
to detect software vulnerabilities. CoRR, abs/1807.06756, 2018.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,9(8):1735–1780, 1997.

[7] K. Cho, B. van Merrienboer, C¸ . G¨ulc¸ehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. In A. Moschitti, B. Pang,

12

and W. Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 1724–1734. ACL, 2014.

[8] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu. Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alch´e-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 10197–10207, 2019.

[9] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated graph sequence neural networks. In Y. Bengio and Y.
LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.

[10] B. Rozi`ere, M. Lachaux, L. Chanussot, and G. Lample. Unsupervised translation of programming languages. In H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[11] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pages 815–823. IEEE Computer Society, 2015.

[12] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discovering vulnerabilities with code property
graphs. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014,
pages 590–604. IEEE Computer Society, 2014.

[13] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. arXiv
preprint,arXiv:1609.02907, 2016.

