
 
  

 

Static Detection of Vulnerabilities via Graph Attention hierarchically 

Yuhan Zhang 1,2, Xueyang Liu1+, Dongdong Du3+ 

  
  

  

Abstract. With the rapid growth of the software industry, the risks of vulnerabilities are inevitably 
increasing. Deep learning based methods have been widely used in vulnerability detection in recent years. 
Since the inherent graph structure of source code contains rich semantics, many deep learning works have 
exploited graph neural networks to enhance code representation. Despite their novel design, learning the 
structural information in the graph hierarchically and focusing on important nodes are still problems to better 
capture vulnerability semantics. To tackle this bottleneck, we propose a novel neural model for vulnerability 
detection. A SAGPool module is designed to automatically chooses important nodes to retain hierarchically 
in each graph convolution layer. Our model is trained and tested over the REVEAL dataset built on two 
popular and well-maintained open-source projects. The experimental results demonstrate that our model 
outperforms the state-of-the-art methods. 

Keywords: code vulnerabilities, graph neural network, attention, etc. 

1. Introduction  
Internet and software have gradually become indispensable tools for human society. Due to the 

massively growing number of software users and more prosperous software functions, the software's 
complexity increases dramatically, which inevitably increases the security risks of software systems.  

However, it is challenging and tedious to detect vulnerabilities even for developers with specialized 
security expertise. Thus, automatic detection of vulnerabilities in source code has attracted a great research 
focus. Traditional techniques like static analysis, dynamic analysis, and symbolic execution rely on expert 
knowledge, resulting in high labor costs. Deep learning and machine learning have demonstrated their 
extraordinary ability to summarize from samples and deal with noise. The feature mining and representation 
capabilities of deep neural networks also provide an effective technical approach to detect software 
vulnerabilities automatically. 

Several studies have explored the potential of applying deep learning techniques to detect vulnerabilities. 
However, most of these works have limitations in learning the semantic information. On one hand, there are 
many substructures such as paths, trees and cycles which give the meaningful information, message-passing 
in graph neural network may lost some semantic information. On the other hand, different nodes in the code 
representation graphs contribute differently in the representation of the code graph. Thus, they do not learn 
the hierarchical representations which are crucial for capturing structural information of graphs.  

To this end, we propose a novel model based on the graph attention neural network, which concentrates 
on hierarchically learning the representation of the code graph. The key innovation is leveraging Self 
Attention Graph Pool(SAGPool)[1] with the graph neural network, which automatically distinguishes 
between nodes that should be dropped and the nodes that should be retained in each layer. We choose the 
REVEAL[2] dataset collected from the realistic data source to make the model more generalizable. Besides, 
the code property graph (CPG) is leveraged to build the graph representation of the input code, for capturing 
more semantics of the source code. CPG combines multiple semantics dimensions, like control flow 
dependencies, data flow dependencies and so on. So it is suitable for the vulnerability detection task.  
                                                           
+  Corresponding author.  

E-mail address: liuxueyang@pku.edu.cn. dudongdong@china-aii.com. 
 

2021 the 11th International Workshop on Computer Science and Engineering (WCSE 2021) 
doi: 10.18178/wcse.2021.06.002

1 National Engineering Research Center for Software Engineering, Peking University, China
2 School of Software and Microelectronics, Peking University, China

3 China Academy of Industrial Internet, Beijing, China 

6

ISBN: 978-981-18-1791-5



  
In summary, our contributions in this paper are: 

 

 

 

2. Related Work 
Deep learning based vulnerability detection methods learn different vulnerability patterns from a train 

dataset, all samples of which are labelled as vulnerable (label 1) or benign (label 0). Most current approaches 
consist of three steps: (1) generate the intermediate representations of the code from the source code (2) 
design suitable model to transform the intermediate representations into vectors (3) output the prediction 
from the classifier according to the vector representations. In the light of different intermediate 
representations of the code, there are two main kinds of approaches: 

2.1. Token-based Models 
Token-based models just regard source code as a token sequence. Russel et al.[3] directly input the code 

sequence of a function into the model, learning the embedding of the code by the Convolution Neural 
Network (CNN) combined with a Random Forest (RF) module. The simple way to process the code lead to 
the length of the sequence affecting the performance of the model. To deal with it, Li et al. propose 
VulDeePecker[4] and SySeVR[5] to extract the code slices as the input of the model. A code slice composes 
of some program statements. These statements are semantically related in data dependency or control 
dependency. VulDeePecker applies a Bidirectional Long Short Term Memory (Bi-LSTM) [6] and SySeVR 
uses a Bidirectional Gate Recurrent Unit (Bi-GRU)[7] to capture the semantics of the context in the code 
slice. Even though the code slice contains some semantic relations, statements semantically related to each 
other may be far away, which makes the model hard to learn their relations. 

2.2. Graph-based Models 
Graph-based models leverage graph representation of code, such as control flow graph (CFG), program 

dependency graph (PDG), code property graph (CPG). Devign[8] get four subgraphs from the CPG with 
respect to different edge types to capture multi-dimensions of semantics. Accordingly, they use gated graph 
neural network (GGNN)[9] to learn the representation of the subgraphs, and combine them by a convolution 
module. Saikat et al. [2] make use of similar model to learn the representation of the CPG. On top of this, 
they employ the representation learning[10] to increase the class separation between vulnerable samples and 
benign samples. All these methods make full use of the semantic graph information of the code, but learn the 
‘flat’ representation of the graph. 

3. Proposed Model 
In this section, we first present an overview of the architecture of our model. Then we introduce each 

component of the model in detail. 

3.1. Overview  
In our model, we formalize the prediction of vulnerable code as a binary classification problem. Figure 1 

shows the architecture of our proposed model. Firstly, we extract the features from the code property graph 
(CPG) of the function code. Then, we learn the embedding of the CPG by the model. Finally, the model 
predicts whether there are vulnerabilities in the code by a Multi-layer Perception (MLP) classifier. 
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We propose the graph neural network model with SAGPool[1] for graph-level classification. The 
SAGPool module chooses important nodes to retain in each layer. Thus, the graph's representation is learned 
hierarchically, which will focus more on the crucial nodes and capture the structure information. 

We have conducted our experiments by comparing our model with the state-of-the-art vulnerability 
detection approaches based on deep learning. The results show the effectiveness of our approach in terms of 
both F1 score and accuracy.



  

 
Fig. 1: Overview Architecture of the Model 

3.2. Extracting Graph Features 
To get the syntax and semantics features of the code, we choose CPG as the intermediate representation, 

which contains the structure information of the whole code. Figure 2 shows an example source code of a 
function and its corresponding CPG, and the statement highlighted in red contains vulnerability. 

In the situation that every node has both type attribute (i.e. Patameter, Assignment, Ifstatement) and 
source code attribute, for node 𝑖𝑖, we use one-hot to encode the type of the node as 𝑇𝑇𝑖𝑖 and use word2vec to 
encode the source code segment as 𝐶𝐶𝑖𝑖. Specifically, 𝐶𝐶𝑖𝑖 is calculated by adding the vectors of all tokens in the 
code segment. The finally representation of node 𝑖𝑖 is denoted as ℎ𝑖𝑖0  =  [𝑇𝑇𝑖𝑖  ||𝐶𝐶𝑖𝑖], where ||  means concatenate 
operation. It is used to initialize the input node features 𝐻𝐻 ∈ ℝ𝑁𝑁×𝐹𝐹 for GNN module, where 𝑁𝑁 denotes the 
number of nodes in the CPG and 𝐹𝐹 denotes the size of the node feature vectors. 

 
Fig. 2: An Example of a Function and the Corresponding CPG 

3.3. Graph Embedding with SAGPool 
We use Graph Convolution Network (GCN) with SAGPool[1] to learn the embedding of the graph. The 

process is shown in Figure 3, and the CPG in Figure 2 is simplified via numbers. The key point of SAGPool 
is that it uses GCN to calculate self-attention scores. Attention mechanisms make models focus more on 
important features and less on unimportant features. Specifically, self-attention allows input features to be 
the criteria for the attention itself. SAGPool obtains self-attention scores using graph convolution. The GCN 
formula[13] used in the model is: 

                                                                       𝐺𝐺𝑁𝑁𝑁𝑁(𝐻𝐻,𝐴𝐴) = 𝐷𝐷�−
1
2𝐴𝐴𝐷𝐷�−

1
2𝐻𝐻                                                                    (1) 

Accordingly, attention score 𝑍𝑍 ∈ ℝ𝑁𝑁×1 is calculated using the node features output from the GCN layer: 
𝑍𝑍 = 𝜎𝜎(𝐺𝐺𝑁𝑁𝑁𝑁(𝐻𝐻,𝐴𝐴)Θ𝑎𝑎𝑎𝑎𝑎𝑎) (2) 

8



  
where 𝐴𝐴 ∈ ℝ𝑁𝑁×𝑁𝑁  is the adjacency matrix, 𝐷𝐷� ∈ ℝ𝑁𝑁×𝑁𝑁  is the degree matrix of 𝐴𝐴 , and Θ𝑎𝑎𝑎𝑎𝑎𝑎 ∈ ℝ𝐹𝐹×1  is the 
parameter for SAGPool layer. 

SAGPool selects nodes by retaining a portion of nodes of the input graph. The hyperparameter 𝑘𝑘 ∈
(0,1] ,which is called pooling ratio, determines the number of nodes to keep, and the top ⌈𝑘𝑘𝑁𝑁⌉ nodes are 
selected according to the value of attention scores in 𝑍𝑍. 

𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘(𝑍𝑍, ⌈𝑘𝑘𝑁𝑁⌉ ),𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 (3) 

Where  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘  is the function that returns the indices of the top ⌈𝑘𝑘𝑁𝑁⌉ values, ⋅𝑖𝑖𝑖𝑖𝑖𝑖  is the indexing 
operation and 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 is the feature attention mask. In Figure 3, the model chooses nodes 1,5,6,7,8, which 
contain more semantic information of the function. 

After getting the self-attention mask, SAGPool masks the input graph for graph pooling. The equation 
for calculating the pooled graph is: 

𝐻𝐻′ = 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,:,𝐻𝐻𝑜𝑜𝑜𝑜𝑎𝑎 = 𝐻𝐻′ ⊙ 𝑍𝑍𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 ,𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 (4) 

Where 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖,:  is the row-wise indexed feature matrix, ⊙ is the broadcasted elementwise product, and 
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 is the row-wise and col-wise indexed adjacency matrix. 𝐻𝐻𝑜𝑜𝑜𝑜𝑎𝑎 and 𝐴𝐴𝑜𝑜𝑜𝑜𝑎𝑎 are the new feature matrix 
and the corresponding adjacency matrix. 

 
Fig. 3: An Illustration of the GCN Layer and SAGPool Layer 

After 𝑇𝑇 GCN layers with SAGPool, we get the features of all nodes in the CPG, and the embedding of 
the graph will be calculated by the sum of all node features in last layer, denoted as ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ. 

3.4. Training 
In the code dataset from the real scene, the number of vulnerable samples is far smaller than that of non-

vulnerable samples. In REVEAL[2], only 9.16% of the samples are vulnerable. To improve the performance, 
we over-sample vulnerable samples to alleviate the data imbalance. In addition, the triplet loss[11] is adopted 
to increase the discrimination between positive and negative samples. 

In the classification layer, the embedding of CPG, ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ, is firstly projected to a latent space by a dense 
layer 𝑓𝑓(⋅). The total loss is composed of three loss functions:(1) cross entropy loss ℒ𝑐𝑐𝑐𝑐 (2) triplet loss ℒ𝑎𝑎𝑔𝑔𝑖𝑖 (3) 
regularization loss ℒ𝑔𝑔𝑐𝑐𝑔𝑔, i.e.: 

ℒ = ℒ𝑐𝑐𝑐𝑐 + 𝛼𝛼ℒ𝑎𝑎𝑔𝑔𝑖𝑖 + 𝛽𝛽ℒ𝑎𝑎𝑔𝑔𝑖𝑖 (5) 

ℒ𝑐𝑐𝑐𝑐 = −∑�𝑦𝑦� ⋅ 𝑙𝑙𝑡𝑡𝑙𝑙(𝑦𝑦) + (1 − 𝑦𝑦�) ⋅ 𝑙𝑙𝑡𝑡𝑙𝑙(1 − 𝑦𝑦)� (6) 

ℒ𝑎𝑎𝑔𝑔𝑖𝑖 = �𝔻𝔻 �𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ�, 𝑓𝑓(ℎ𝑚𝑚)� − 𝔻𝔻�𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ�, 𝑓𝑓(ℎ𝑖𝑖)� + 𝛾𝛾� (7) 

ℒ𝑔𝑔𝑐𝑐𝑔𝑔 =∥ 𝑓𝑓�ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔ℎ� ∥ +∥ 𝑓𝑓(ℎ𝑚𝑚) ∥ +∥ 𝑓𝑓(ℎ𝑖𝑖) ∥ (8) 

𝔻𝔻(𝑣𝑣1, 𝑣𝑣2) = 1 − �
𝑣𝑣1 ⋅ 𝑣𝑣2

∥ 𝑣𝑣1 ∥∗∥ 𝑣𝑣1 ∥
� (9) 

ℒ𝑐𝑐𝑐𝑐 penalizes miss-classifications between the predict label 𝑦𝑦� and the true label 𝑦𝑦. ℒ𝑎𝑎𝑔𝑔𝑖𝑖 makes examples 
from the same class close and examples from different class far away from each other. Here, ℎ𝑚𝑚 is graph 
embedding from the same class, while ℎ𝑖𝑖  is graph embedding from different class. 𝔻𝔻(⋅) represents the 
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cosine distance between two vectors. 𝛾𝛾 defines the minimum separation boundary between classes. The goal 
of our task is to learn parameters of the model by minimizing the loss function. 

 

4. Experiment and Analysis 

4.1. Experimental Setup 
Dataset and Evaluate Metrics 
In order to evaluate our model more realistically, we select the dataset REVEAL gathered from past 

vulnerabilities of open-source projects Linux Debian Kernel and Chromium. The total number of samples in 
the dataset is 18169 with 9.16% vulnerable samples. Every sample in the dataset is a function collected from 
vulnerability-fix commits. To get the graph representations of the code samples, we use Joern[12] to extract 
CPGs. We evaluate the approaches on four widely used metrics for binary classification tasks, i.e., Accuracy, 
Precision, Recall, and F1-score. 

Experimental Settings 
We use Pytorch 1.5.1 with Cuda 10.1 to implement our experiment. We follow the implementation of 

baseline models in [2]. For the GCN layer, the input embedding size is 169, and we set the hidden size to 256. 
The number of GCN and SAGPool layers is 3, and the learning rate is 0.001. The hyperparameters in the loss 
function, i.e., α,β, γ are set to 0.5, 0.001, 0.5. We use the Adam optimizer for all models. 

4.2. Research Question 
A. How does our proposed approach perform when compared with state-of-the-art models? 
To answer this question, we compare the proposed model with the state-of-the-art deep learning-based 

approaches: 
VulDeePecker: the model extracts code gadgets according to library/API functions and employs the Bi-

LSTM model to learn the representation of them for classification. 
SySeVR: a state-of-the-art token-based model that extracts code slices via PDGs and employs a Bi-

GRU model to learn the representation of them for classification. 
Devign: the first graph-based deep learning model that leverages GGNN to learn the embedding of the 

CPG of a function and uses a Convolution module to classify. 
REVEAL: the state-of-the-art deep learning model that uses GGNN to learn the embedding of the CPG 

of a function and uses representation learning to classify. 

Table 1 Classification Accuracies, Precisions, Recalls and F1 Scores of Baseline Models in Percentages 

method Acc Prec Recall F1 

VulDeePecker 89.05 17.68 13.87 15.7 

SySeVR 84.22 24.46 40.11 30.25 

Devign 88.41 34.61 26.67 29.87 

REVEAL 84.37 30.91 60.91 41.25 

Our model 84.90 32.43 60.25 42.14 

As indicated in Table 1, our proposed model achieves the highest score in F1-score and precision. 
Compared to REVEAL, a robust latest method, the relative accuracy gain is 0.53%, the F1-score gain is 
0.89%, and the relative precision gain is 1.52%. At the same time, the accuracy and F1 are relatively high 
compared to other baseline models. Overall, our proposed model demonstrates significant performance 
superiority over the baseline models. 

B. Does SAGPool module learn more extra structural information? 
To investigate this question, we choose the GCN module without SAGPool as the baseline. We also 

compared the model without the sample module and triplet module to explore their impacts. 
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Table 2 Impact of SAGPool, Sample and Triplet Loss

approach Acc Prec Recall F1

Complete model 84.90 32.43 60.25 42.14

w/o SAGPool 78.12 40.13 17.72 24.58

w/o sample 80.41 36.69 33.93 35.26

w/o triplet loss 82.37 36.84 42.04 39.27

w/o sample & triplet loss 83.30 38.71 28.83 33.05

Table 2 summarizes all the experiment results. The model without SAGPool module declines sharply, 
with 17.56% in F1 score and 6.78% in accuracy. We can safely conclude that SAGPool module helps learn 
more structural information because it pays more attention to code graphs’ critical nodes. We observed that 
oversampling positive samples improves the performance a lot in the imbalanced dataset in general. The 
gains in F1-score is 6.88% and the gains in accuracy is 4.49%. The results also show that the triplet loss 
helps discriminate positive samples and negative samples. These comparisons clearly demonstrate the 
effectiveness of the SAGPool module, the sampling mechanism, and the triplet loss.

5. Conclusion and Threats to Validity
This study put forward a GCN model with SAGPool to detect code vulnerabilities and verify the 

superiority over other state-of-art models in the experiment. In a word, the model can learn more structural
information about the vulnerability code, which will perform well in realistic scenes.

As mentioned in the experiment, alleviating the data imbalance may improve the model’s performance, 
which is a problem in line with reality in the static vulnerability detection task. We only take a standard 
method to solve it, which may result in overfitting. So it needs more improvements for imbalanced data 
specific to the task itself. Finally, the size of the dataset is not big enough for the task, so the model cannot 
learn the vulnerability patterns well. Thus, datasets collected from realistic data sources are needed. However, 
such a dataset is hard to collect for the requirements for expert knowledge.
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